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1 INTRODUCTION

¥inite element modeling has proven useful for accurately simulating
scattered or radiated fields from complex three-dimensional objects whose geometry
varies on the scale of afraction of a wavelength, In order to make this modeling
practical for enginecring design, it iS necessary to integrate the stages of geomett y
modeling and mesh generation, numerical solution of the ficlds, and display of ficld
information. The stages of geometry modeling, mesh generation, and field display
a1 ¢ commonly completed using commerc ially avail able software. packages.
Algorithms for the numerical solution of the. fields need to be. written for the. specific

class of problems considered. Interior problems- simulating fieldsin wave.gai(ics
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and cavitics- have been successfully solved using finite cleme nt methods because a
bounding surface, such as the cavity walls, exactly truncates the problem domain.
Exterior problems- simulating fields scatlered or radiated from structures- are more
difficult to model because of the need to numerically truncate the finite  element
mesh. To practicaly compute asolutionto exterior problems, the domain must be
truncated at some finite, surface where. the Sommerfeld radi a ion condition is
enforced, either approximately or exactly. Approximate methods attempt to truncate
the mesh using only local field information at each grid point, whereas exact
methods arc global, needing information from the entire mesh boundary. This paper
outlines amethod that couples threc-dimensional finite element solutions interior to
the. bounding surface. with an efficient integra equation solution that exactly
enforces the Sommerfeld radiation condition.

A finite element model of Maxwell's equations furnishes a local solution of
ficlds that is accurate in and around inhomogenous, complex bodies (Silvester and
Yerrari, 1990; Jin, 1993). The finite clement discretization can be applied to the
vector Helmholtz wave equation, derived directly from Maxwell's car] equations, or
to asctof equations derived from a scalar-vector potential formulation of the fields.
The use of one or the other is directly tied to the choice of three-dimensional vector
finite element basis functions. Edge elements (Mur and de Hoop,1985; 1 .ee and
Mittra, 1992) can be naturally used to discretize the Helmholtz equation, providing
tangential field continuity across material interfaces, correctdiscontinuitiy in normal
field components across interfaces, and anallural dis,crcli'/.a(ion of tangentia field
components a geometry surfaces. Nodal elements arc. used to discretize scalar-
vector potential formulations where auxiliary equations arc introduced to enforce

boundary conditions at surfaces and to enforce zero divergence of ficlds in source-




free media (Paulsen, Boyse and Lynch, 1992; Angelini, Soize and Soudais, 1993).
Formulations based on the use of mixed elements arc also possible (Mur, 1993).

Since the finite element formulation of Maxwell’s equations applies to an
infinite. domain, it is necessary to truncate the finite clement mesh, enforcing the
Sommerfeld radiation condition. Approximate absorbing boundary conditions can
be used to provide a computationally efficient enforcement of the radiation
condition (Mittra, Ramahi, Khebir, Gordon and Kouki, 1989; 1J' Angelo and
Mayergoyz, 1989; Chatterjec, Jin and Volakis, 1993). These boundary conditions
only require local field information and therefore do not disturb the sparsity of the
rc.suiting systemof linear equations. Due to the inherent approximations in the
enforcement of these boundary conditions however, problems can arise. in their usc.
Jundamentally, they are most accurate when placed far from the object, requiring
additional mesh discretization and resulting computational cost.

An dternative to approximate radiation conditions is the use of an exact
expression for the fields on and outside an arbitrary sul-face that truncates the
computational mesh. The. problem domain is divided into interior and cxterior
regions, separate.d at the mesh boundary. The interior fields are modeled using the.
finite elementrepresentat ion, while those in the exterior region arec modeled using an
integral equation formulation. The unknown sources in the integral equation are
directly related to the tangential fields on the mesh boundary, and the radiation
condition is implicitly enforced exactly through the use of the free-spacx Green's
function. ¥ields in the two regions arc. coupled by enforcing boundary conditions cm
tangentialficld components at the. mesh boundary, thereby producing a unique and
exact solution to Maxwell’s equations in both regions. Onc carly usc of this

technique was outlined by Zienkicwicz, Helly and Bettess (1977). To enforce




continuity of fieldsat the mesh boundary, the expansion functions used in the
integral equation can be identical or similar to those used at the boundary of the
finite element mesh. This approach alows the mesh to conform to the body and
results in a near exact enforcement of field continuity betweenthe two regions
(Angelini, Soize and Soudais, 1993; Jin and l.iepa, 1988; Calalo, Imbriale, Jacobi,
Liewer et al, 1989; Gong and Glisson, 1990; Yuan, Lynch and Strohbchn, 1990). It
also results in the computer storage and solution time being at least proportional to
that of a three-dime nsional surface integral equation formulation, defeating the
computational efficiency of the finite element method and limiting its usefulness.

A second approach decouples the interior finite clement mesh from that
usedfor the expansion functions in the integral equation formulation. The
advantage of mesh decoupling is that a proper choice of the boundary can lead to an
efficient numerical solution.  Inthe unimomentmethod introduced by Mei (1972),
the boundary is the surface of a separable coordinate system (for example the
surface of a sphere). In the method introduced by Boyse and Seidl (] 99] ) a surface
of revolution is proposed which results in eigenfunction series expansion in only one
direction (azimuthal). This formulation suggested a node-based tetrahedral
expansion in the finite clement region, and aFourier modal azimuthal expansion
together with Hermite polynomial functions along the surface of revolution
generator for the integral equation expansion. A similar two-dimensional
formulat ion for arbitrary scatterers was given by Cwi k (1992). The general three-
dimensional formulation in this chapter builds upon these. previous two works,
utilizing vector edge elements todiscretize the Helmholtz wave equation, and
piccewise triangle functions along the generator to efficiently model the mesh

truncation surf ace.. The vector edge elements naturally enforce. the boundary



condition at perfectly conducting surfaces anti do not allow the generation of
parasitic fields encountered when applying nodal elements. They also produce
fewer non-zero entries in the resultant sparse systemof equations relative to nodal

elements. This approach is followed, utilizing these specific features:

1) Theintegral equation mesh is separate from the finite clement mesh, and its
density can vary according toexpericnced guidelines of known integral
equation solutions, independent of the finite element grid. The integral equation
mesh can be as close as possible to the object, limiting the computationa
expense. of both the integral equation and finite clement portions of the

calculation.

2) The surface which truncates the finite element mesh is a surface of
revolution (Boyse and Seidl, 1991). The use of this surface gives an efficient
integral equation representation for the exterior fields. Using this surface
decreases the. number of unknowns associated with the integral equation portion
of the problem. Additionally. the surface nceds only enclose the body and can
be placed as close as possible to it, thus reducing the size of the problem

domain.

3) Vector edge elements arc used to discretize the Helmholtz wave equation.
As noted above, these functions naturally enforce the proper continuity and
discontinuities in vector field components at interfaces. They aso naturaly

enforce the boundary condition at perfectly conducting surfaces and do not



allow the generation of parasitic fields encountered when applying nodal

clements.

The formulation handles both scattering and radiation problems (e.g.,
antenna elementsor arrays). The radiation problem only differs by the needto
model impressed sources by the finite clement mesh (Zuffada, Cwik and Jamnejad,
1995). 10 this chapter a detailed description of the. scattering formulation will be
outlined, followed by an examination of convergence and accuracy, and results for a
setof simple scatterers. in Cwik, Zuffada and Jamnejad (1995) further results of

this approach can befound.

2. Theoretical formulation

The scatterer and surrounding space arc broken into two regions: an interior
part containing the scatterers and frecspace region oat to adefined surface, and the
exterior homogenous part (Figure 1). To efficiently model fields in the exterior
region, the surface bounding the interior is prescribed to be a sat-face of revolution,
The following formulation first outlines the interior finitc elementrepresentation,
then the exterior integral equation model, and finally tbc coupling of fields at the

boundary separating the two regions.

2.1 The finite element representation
In the. interior region, a finite element discretization of aform of the. wave

equation is used to model the geometry and ficlds. Applying a form of Green's

thecorem- multiplying the wave equation by a testing function T, integrating over
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the volume and using the divergence theorem-a weak form of the wave equationis
obtained. This form includes a surface integral which provides for a boundary
condition relating the field inside the selected volume to the field on the boundary,

and thus provides a link to the outside ficld
1 sk I Sk ) A TR
70 m (VxH)e(VXT")~K*p, i1 o7 }IV~J ExieT ds=0.
N

M
His the magnetic field (the ﬁ-cquation is used in the development; the
formulation of the dual F-cquation is presented in Section 5), Tis a testing
function, the asterisk denotes conjugation, and I X i is the tangential component

of I2on the surface S ( dV).In general, dVrepresents al boundaries of the
volume, including the surface of revolution and any perfect conductors. The

surface integrals over the perfect conductors are identically zero since their

integrand includes the tangential electric field EX . Equation (1) therefore
represents the fields internal to and on the surface S. These fields will be modeled
using a sctof properly chosen finite element basis functions. in Equation ( 1),

€ and [, arc the relative permittivity and permeability respectively, and

k, and 1), are free.-space wave number and impedance, respectively.

2.2 The combined-ficld integral equation representation

In the formulation of the integral equation, fictitious electric (] =nx i])

and 1nagnclic(\7=~ﬁ X F) surface currents, equivalent to the tangential

magnetic and electric fields just on the exterior of the boundary surface, arc defined



on the boundary. These currents produce fields in the exterior region which are the
scattered fields. The sum of the scatiered and the incident field results in the total
field everywhere outside the boundary surface. On the boundary itself, this sum is
equal to half the total field. The scattered ficlds are obtained from the tangential
currents via an integral over the boundary using the free-space Green's function
kernel. Two equations are obtained for the electric and magnetic fields on the
boundary- the electric field integral equation (FiFIE) and the magnetic field integral
equation (MFIE), respectively. A linear combination of the two with a constant
weighting factor ¢¢ results in the combinedficld integral eguation (CHIE). The

genera form used in this formulation is

ZA/[:M /710 ]+' ZJ []]: V‘ (2)

where % and 7, are the intcgro-differential operators used in defining the CI:l1i,

and V,- represents the incident ficld.

2.3 Enforcing boundary conditions

The previous two sections have outlined field representations for the
interior and exterior regions. In the interior region, boundary conditions a any
material interface, including perfect conductors, must beenforcedby a proper
application of the finite element basis functions. At the artificial surface of
revolution separating the interior and exterior regions, boundary conditions on the

continuity of tangential field components must be enforced.



Initially, four equations are written for the three unknown field quantities of

interest. The first unknown is the magnetic field internal to the volume V. The other

two arc the electric and magnetic surface currents, J and A; ', on tbc boundary.

The four equations are found from the finite element equation (1), the
integral equation (CHIE) relating J and M currents to the incident field (2), and a
set of equations enforcing the continuity of 7/ and I/ across the. boundary,

Continuity of the magnetic field across the boundary is enforced in aweak sense

”(ﬁxﬁ»])’(ﬁXl_/')ds:O )

N

where. {J isatesting function. Thisis an essential boundary condition and must be
explicitly enforced. Continuity of the electric field across tbc boundary is made

implicit in the finite clement equation in the surface integral term 71 X I, and is

termed anatural boundary condition

J‘J‘(]T X i — M) 7 ds=0 )
N

This equation is combined with(1) to produce

o ”‘] (V) o (VT )= Ko, IT o 7 1(1(”  MeT ds=0. @
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Equations (5), (3) and (2) constitute the system of equat ions representing ficlds in all

space in and about the scatterer.

3. Numerical implementation

The three equations (5), (3) and (2) arc discretized using appropriate sets of
basis functions. In the interior region, tetrahedral, vector edge elements (Whitney
clements) arc used. On the bounding surface of revolution, a set of functions with
piccewise linear variation along the surface of revolution generator, and with an

azimu thal Fouricr modal variat ion arc used.

3.1 The finite element model

An ensemble of elements filling the interior region, excluding any perfect
conducting objects, is created using a mesh generator. The elements should
accurately represent the magnetic field, the geometry of the scatterer, and the
bounding surface of revolution. Since the scatterer iS not a body of revolution in
genera, the finite clement mesh will extend out from the scatterer to the surface of

revolution. | ‘or an accurate model of the fields, tetrahedral, vector edge elements arc

used to model 77 (1 .ec and Mittra, 1992)

H(r)=Y hW(r) ®)
where
W}m (r) = A’m (r)VA(Il (r) - AIl (’.)VA’IH (r) (Ga)
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and A (r) are the tetrahedral shape functions. Testing functions arc also chosen to
be the functions W (r).

These functions arc used in the volume integralof (S). The resultant

discretized volume integral is

ﬂij{i(Vxﬁ)o(VxW')—kz;l,iloW*]dVﬂKll M
]kO Sr
v

where K isthe assembled sparse finite element matrix, and 11 is tbc vector of

complex, finite element basis function amplitudes.

3.2 Ancfficient exterior integral equation model

In the surface of revolution geometry, a cylindrical coordinate
system (P, ¢, 2) is selected for the exterior region, and orthogonal surface
coordinates (1, @) arc used on the boundary itsclf; @ is the azimuthal angle

variable and 1 is the contour length variable alongthe generating curve of the
surface of revolution. Inthe formulation of the integral equation, the equivalent
electric and magnetic surface currents (J and M ) arc defined just on the outside of

the surface through the. relations

ull =E - L[J] tK[M/n,] ®)
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ung H=n, '~ K[T]— LIM/m,] ©

in which u is the Heaviside function,

[, for points outside 9V
u=1 1 forpointsondV (9a)
O, for points inside dV

and 1. and A’ are integro-differential operators given by
11-1= jn, H(kg [+ W [-]) gk JF—~7Dds’ (10)
av
Kl 1= [[ 11X kg Vg ko F = 7]y’ (11)
av
In(1()) and (11) g is the Green's function for unboundedspace
&(k, |7' - 7"|) = —'--—#’j—.—-. (12)

Yrom the above equations we can write the following two integral

equationson tbc tangential components of tbc field, for obtaining the. Jand M




surface currents. The electric field integral equation, and magnetic field integral

equal ion yespectivly arc,

GueAxI-K)IM/In| +1J)| =ixM, (3

(AXL) [MIn, 1+ G Mo T4axK)[J1=1n, J, (13b)

in which, for the sake of symmetry, the source term (tangential components of the
incident field) arc given as fictitious surface currents .7,. and M, “I'hey arc

presented in aform that is very similar both in terms of dimensions as well as vector
orientations. The symbol, 1, represents the unity operator and is introduced for

notational consistency.

These two integral cquationse arc linearly combined to obtain the

combined-field integral equation

{0- )G AxT-K)y+a (ixX1)}[M /1, 1+
{d-y Lt oGl +ix K)}I)= (14)

(I— )i XM, +an, J;

1iquation (14) is put in the more compact form given by (2) where the operators

Zy={(1—a)(3 e AxT—K)+o (i x 1)}
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Zy={(1-a)L+a (31, 1+ixK)} (15)

and source term

Vi=(1-a)i X M, +an,J, (16)

are used. This formulation of the operators follows from CICHRO code
devetlopmeni: (Medgeysi-M itschang and Putnam, 1984), although other
formulations are also possible.

Using the method of moments, this integral equation is turned into a
matrix equation. The unknown currents?l and J arc expanded in a finite series of

basis functions U on the surface of revolution. ‘I’he testing functions arc selected

identical to expansion functions on the surface of revolution. They arc written as

separable functions of 7 and ¢ and will have two orthogonal components along the

A

{ and ¢ directions. The azimuthal function is the exponential harmonic
exp(jn@) (Fourier harmonics). The variaion along the surface of revolution
generator is represented by a triangle function 7'(r)divided by p(f), the radia

distance from the z-axis. |'bus,

!

= Z(a,’,‘k U',—af, U,f’,\,) in gV (17)

n
nk
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M =Ymn,b, U, -bUs)  indVv (18)

vV = Z(C' LUl -8, Uf‘) indv (19

‘n,
nk

and both expansionand testing functions are given as

77! 2 7;((12(,1"@

nk =1 -;(;) ’ (20)
— AL
=9 7—‘73 " (22
p

7, (t)isatiangle function spanning the k-thannulus cm the surface of

revolution. Fach annulus spans two segments along the generator, each referred to as
a strip. Adjacent triangles overlap onone segment. These overlapping triangle
functions result in approximations to J and M which arc piecewise linear in 7 and
aVouricr seriesin .

in the moment method, inner products are formed between the testing
functions and the integral equations expanded over the basis functions. Here, using
the Galerkin method, basis and testing functions arc chosen identical -as above.. The

complex inner product between any two vectors U and V is defined as




<l7, V>av = ” U-V'ids. (22)
v

The original integral equation is transformed into a setof linear equations
for each of the Fourier modes since the Fourier modes arc orthogonal and decouple.

‘I"bus, in the compact form it can be written as:

S (2, (U, 1, U+ 5,7, (U, 1, U= v, (U, U,)

m m m

(23)

where m,, and j,, arc the complex unknown amplitudes for each Fourier mode.

This is the second equation in the system, representing fields scattered from the

object.

3.3 Coupling the two representations

The surface. integral in (S) and the first component of the integral in (3) are
termed the coupling integrals, since with a convenient choice of the unknown in the
first and of the testing function in the second, they are made to couple interior and
exterior field representations, The surface SinN these surface integrals is chosen to
be that of the surface of revolution. Because the surface of revolution is discretized
when using these basis functions, the issue arises of how to represent W on S.
Indecd, theouter surface of the interior volume is a union of finite element facets.
These facets vary, according to the order of finite element representation chosen,

from planes to curved surfaces. In general, however, this surface is not identical to

16




the surface of revolution. Similarly, the surface of revolution is obtained by
revolving a generating curve around an axis, creating a surface whose €ross section
iscircular. However, for numerical purposes, the generator itself is not necessarily
smooth, but is piecewise linear, Thus practically, only in the limitof fine meshing

will the two surfaces coincide with each other.

The finite element function W is evaluated approximately on the portion
of surface of revolution projected from the triangular facet of the tetrahedron onto a
strip. ‘I"his is accomplished by an orthogonal projection of the tetrahedral facet
surface onto the surface of revolution, thus introducing an error which depends on
the size of the tetrahedral facet with respect to the curvature of the surface of

revolution. The coupling term is given by the integral

C= !{[UO W'ds (24)

where, for each integral equation basis and finite element testing function, the
contributing surface is the union of the projections of a triangular boundary surface
onto the proper number of surface of revolution strips (up to two in well-posed
cam). Such surfaces arc curved triangles, curved quadrilaterals, or curved
pentagons. The evaluation of the integrals was done numerically by first inscribing
the above irregular surfaces into curved rectangles and then by determining the
points inside the region of interest from the knowledge of the simplex coordinates of
the original finite clement boundary facet and their properties at points inside the
facet, These coupling integrals, as well as the discretizat ion of the second surface

integral in (3), complete the discretization of the problem.

17



4. Numerical solution of the linear system
having introduced the basis and testing functions for the volume as well as

the surface unknowns, substitution into the complete. set of equations yields

r i N M L
I)>:J] hl)<l(])[u,,)] u’q> - n(,’”{d]n)"l <l/'" . "V(I> = 0, =1,2,3..P
r o M -
-y, ¥ h,<w, -U">4 Mo 2 im{Uy - |ix0, ]} = 0, n=1,23..M
p=1 ! ! m=1
M M 4 o
);Imm<sz[Um] -Un> 4 m):ljm<zj,"[um] . u"> = %;vl,m (um .U">, n= 1,2,3...M

(25)

which can be expressed in matrix form as

K ¢ o|mn| |0
¢t 0 7, M[=]|0 (26)
0 z, 7l v,



where

Z, = 1,{U,, -[#xU, ) (27)
7. :<ZMm[Um ] ) En)

(2,[0,].0,)

!

Z,

!

K » IS tbc volume integral operator in (7); Zynanti Z,, arc defined in the. previous
sections. Note that § indicates the adjoint of amatrix, while # and M arc the number
of finite clement and integral equation basis functions, respectively.

Itisnoted that the overall matrix size is dominated by K since the surface
unknowns arc generally a small fraction of those in the volume. Note also that both
K and Caresparse, Z,, is tri-diagonal and 7, and ZJ arc banded. The overall

matrix is very sparse and looks like the scatter plot illustrated in Figure 2 for asmall
problem generated for graphical demonstration. in particular it is complex, non-

symmetric, and non-Hermitian.

The solution to this matrix equation has been developed using two

alternat i ve strategies depending upon the application. The two approaches arc

1) Solve the entire system in one step using an iterative agorithm for non-

symmetric systems. in this work the non-symmetric variant of the quasi
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minimal residual algorithm (Freund and Nachtigal, 1991; 1.ucas, 1993) was

appli cd.

2) Solve the system in two steps by first eliminating H through the

computation of Z,, = C' K- 'C and then by solving the reduced system

~7M-i-7,J=0
Z,M+7]=V,"

The first step was accomplished by applying a symmetric variant of the
quasi-minimal residual iterative algorithm as wc]] as adirect solver based
on an sparse U ‘DU factorization. The resulting overall matrix (28) was
treated as being dense and the solution of this second system was
accomplished via a direct denseI.U decomposition, since its size is

relatively small.

The choice of the solution method is dependentupon a variety of factors,
including the number of right-hand side excitation vectors and the efficacy of a
preconditioner if iterative agorithms arc used to calculate 7., in the second
method. The computational cost of the first method is mainly duc to solving the
system iteratively for each right hand side. The. major computational cost in the

second method is calculating Zy 5 this requires the solution of a system of

equations, K™'C, where C is a rectangular matrix with a possibly large number of




columns for electrically large scatterers. When considering a radiation problem
where there are one or a few right-hand sides, or a scattering problem with one or a
few excitations, the first method may be preferable. When mono-static radar cross
section calculations are. performed and there are upwards of thousands of right-hand
sides, the second mecthod is more appropriate. This second approach has been
tmplemented on scalable distributed memory computers, and is reported in Cwik,

Katr, Zuffada and Jamnejad (1 995).

The speed of convergence of iterative methods such as the quasi-minimal
residual algorithm depends on the condition number of the matrix. To improve on
the. condition number of the matrix of (26) in a one-step solution, or of matrix K in
a two-step solution. standard preconditioning methods have been examined. It is
noted that, when preconditioning the original matrix, it is necessary to preserve its
valuable properties—in the case of the one-step it iSsparsity, whereas for the two-step
approach it is sparsity and symmetry. A matrix M is used as a left preconditioner

in the one-step solution

M-A-x=M-b (29)

where A is the global matrix and b is the right hand side. ‘1’0 preserve the sparsity
of the matrix, the multiplication on the left-hand side of (29) is performed every
time the matrix is used by the quasi-minimal residualalgorithm, so that the
algorithm operates on a sparse matrix. It issecen that the solution to the modified

problem s the same as that to the original problem.
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Alternately, in the two-step method, the matrix on which the quasi-minimal
residual algorithm is applied is symmetric. Then the scheme of (29) is modified into

the symmetric scheme

MeAM [(M7)77 5] =w (30)
syml%fz;rr?c matrix \—————~*
X, modified solution

where the matrix M is a symmetric preconditioner. Again, 1o preserve the sparsity
of the matrix, the multiplications by M’ are performed every time the matrix is
used by the quasi-minimal residual algorithm, so that the algorithm operates on a
sparse system. More detailed information on the matrix equation solvers canbe

found in Cwik, Katz, Zuffada and Jamnejad (1 996).

5. Electric fjeld formulation

A dual formulation for the electric field within the mesh can bc developed
by either reformulating the problem beginning with the Helmholtz equation for the
electric fieldin Sections 2 through 4, or by applying duality to the fina equationsin
Section 4. As inthe magnetic field formulation, this formulation involves the

expansion of the electric field over the mesh as

E@) =, eW,(r) @a1)

where 7}, IS introduced as it was in the expansions in Section 3 toscale the

equations propetly. The resultant system dual to (26) then is
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K ¢ o] |0
¢ o -7,3|=|0
0 7z, 7,\M| v, @2

where K¥ is the dual of (7)

Mo H "V XE)e(VXW')-Ke Lo W1 dv=>K"I 33
JkO N 'ur J

v
and other notation remains unchanged.

The electric ficld formulation has specific advantages when simulating the
fields scattered m radiated from particular objects. For example when considering
objects with perfectly conducting flat plates or fins, or objects with clectrically thin
strips or patches, itis more expedient to apply the perfectly conducting boundary
condition using the electric field formulation than the magnetic field formulation. In
the electric field formulation, element edges that lic on the perfect conductor are
removed from the vector I, and the matrix block K" is similar] y reduced in s ze.
This has the explicit effect of zeroing the coefficients of the electric field lying on
the zero thickness perfect conductors, satisfying the boundary condition that the total
tangential electric field iszero onthe perfect conductor. To accomplish this
enforcement of the boundary conditions using the magnetic field formulation, the
thin conductor must be modeled as a thin volumetric region. The ensuing mesh
generation difficulties of creating the small, often distorted elements, makes this

inconvenient if impractical in practice. An alternative strategy is to mesb both faces

of the zero thickness conductor with edges that are distinct, though coincident,
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therefore modeling the tangential magnetic field on the both faces of the conductor.

This also leads to meshing difficulties in practice.

6. Numerical convergence and results

Several scatterers have been examined in detail, including diclectric
sphere.s, (coated) metal spheres, finite length (coated) metal cylinders, metal
conespheres, and metal cubes. Results for the spheres and dielectric cylinders will
be presented here, results for (he other objects can be found in Cwik, Zuffada and
Jamnejad (1 995). The features of some of the meshes arc shown in Table 1. A
surrounding shell is used to mode] a perfectly conducting object coated with alayer
of dielectric material, As a special case, by choosing the dielectric coating to be air,
the scattering from the perfectly conducting object itself is obtained. Naturaly, no
clements arc required to model fields inside. perfect conductors. The choice of
metallic objects was based on the existence of results from other codes to be used

for comparisons.

‘Jable 1. Objects and their mesh densities

Object Nodes Elements Edges
Dielect ric sphere 1 865 3,963 5,217
Dielectric sphere 2 2,273 10,240 1'2,8%
Metd sphere (coated) 516 1,716 2,889
Diclectric cylinder 7,076 34,776 43,791
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When considering the dielectric sphere or cylinder, only the scatterer itself
was modeled by the mesh since there is no need to extend the mesh outside the
geometry of the scatterer. in the case of the metal sphere, the mesh was a shell

conforming to the object with a thickness chosen to fit one tetrahedral element ,

6.1 Numerical accuracy
The accuracy of this method, compared to analytic solutions or dternative
computational methods or measurements, was investigated as a function of severa

parameters. Some specific parameters arc:

mesh density
number of surface of revolution basis functions along the generator
number of surface of revolution azimuthal Fourier modes

electric permittivity and magnetic permeability of scatierer.

The first three arc functions of electrical wavelength. It is noted that these
parameters are not independent, but rather arc closely related. The canonical object
studied for accuracy was the sphere. Both a meta sphere and a dielectric sphere
were. considered, and in the latter case, meshes of two different densities were
investigated. For simplicity the direction of incidence was taken to be the positive .
direction with the electric field polarized along x, and the Fouricr modes (-1, O, +1)
were considered. Theoretically only the +1 and -1 modesare present in tbc
decomposition of this incident plane wave, and no other mode should arise in the

scattered field. The quantity of interest was chosen to be the fieldscattered in tbe E-
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plane (¢ = 0% ). An crror measure was constructed by taking the difference
between the calculated and exact values, integrated over the range of angles of

observation 0° <0 < 180°. This number was divided by the integral of the
anal ytic solution over the same range to obtain a measure of quality for (he solution.

Table 2 illustrates tbc range of variation for some of the parameters that
were. considered. The electric permittivity €, was fixed at 9 for the study of the

diclectric sphere, whereas the metal sphere was treated with a “coating” of free
space. The table illustrates that the frequency upper limit was chosento correspond
to the ratio of edges per wavelength close to 10. The choice was made with the
intention to investigate the limitations of mesh applicability and to quantify errors in
this rather broad range.

As seen in the following results, high accuracy was obtained for a) average
wavelength to edge ratios between 2(I and 40, and b) wavelength to surface of
revolution triangle length ratios bet ween 10 and 20. 1.ower accuracy can be found

for lesser numbers of unknowns per wavelength.

Table 2. Summary of edges per wavelength on surface of revolution

I requency (GHz) 3 5 7 10 15
Metal Spheret (16)* 50 31 22 15 10
Diclectric Sphere 111 (16)* 17 10 7 : -
Diclectric Sphere 211 (24)* 25 15 11 - -
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*Nominal number of edges along generator
1A layer of free space ismeshed

1€,= 9 used
6.2 Radar cross section and near-field results

A setof radar cross section calculations, showing comparisons with either
analytical results or with calculations obtained with the CICEERO code, is provided
in Figs. 3-7. As mentioned previously results for other objects can be found in
Cwik, Zuffada and Jamnejad (1 995). in the legend our calculation is referred to as
PHOEBUS, the name of the software developed from this formulation. Yigure 3
illustrates the bistatic radar cross section of a metal sphere (radius = ().8 cm) coated
with alayer of lossy dielectric (thickness = 0.2 cm). Calculations arc performed in
both the k-plane and the H-plane and comparisons arc made with available
analytical results. The frequency of excitation is 15 GHz.

Vigure 4 illustrate.s the monostatic radar cross section of a dielectric
cylinder (length = 10.0 cm, radius = 1.0 cm) with €, = 4. The comparison is made
with the CICERO code for the ¢—¢ plane at 2.5 GHz. The discrepancy between the
two plots is duc to geometry modeling using the piccewise linear finite element and
sulfate, of revolution basis functions. This result used, finite clement tetrahedron
with an average edge lengthof 0.2 cm. By decreasing this edge length the two
curves can be made arbitrarily close. The smaller edge length better models the
physical geometry, but is electrically over-sampled (greater than the 20-30 edges per
wavelength typically needed). This type of modeling discrepancy is common in the
finite clement method when using the linear (non-isoparametric) tetrahedron

functions.
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Figure 5 illustrates the near-field results of the electric and magnetic field
on the surface of the dielectric sphere with€, = 9. Shown arc the / and qAS
components of both 1 {and Halong alineat ¢= 45°. The radius of the sphere is 1

cm, and the PH OEBUS results are compared with analytical ones at 5 Gz,

7. Conclusions

This paper presents a method to compute. the fields of penetrable three-
dimensional scatterers of general shape by coupling a finite element solution to an
integral equation solution on a surface of revolution. The surface of revolution is
chosen to surround the scatterer, resulting in a minimal amount of volume that needs
to be discretized. The use of the integral equation provides an exact enforcement of
the Sommerfeld radiation condition. Vector edge elements are used to discretize the
fields inside the volume, whereas the integral equation is discretized on a decouple.ci
surface mesh, introducing a small set of additiona basis functionsto the system.
Scattered fields for a variety of objects have been investigated, as well as fields

inside penctrable scatlerers.
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1L1ST OF FIGURES

Figure ]. Geometry of computational domain showing interior’ and exterior regions.
Figure 2. Scatter plot figuratively showing structure of system of equations.

I Yarkened spaces indicate non-zero matrix entries.

Figure 3. Bistatic radar cross section of coated metal sphere (radius = 0.8 cm,
coating thickness 0.2 cm) at 1S GHz.

Figure 4. Bistatic radar cross section of dielectric cylinder (radius = 1 cm, height =
10 cm) at 2.5 Ghz; ¢—¢ plane.

Figure 5. Electric and magnetic fields on surface of dielectric sphere. (radius= 1cm)
at 5 GHz. Both t and ¢ components are compared to analytical solutions in a cut

along a generator at 45 degrees.
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Figure 1. Geometry of scatterer showing interior ant] exterior regions.
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